Format

Send to

Choose Destination
Neurotherapeutics. 2012 Apr;9(2):323-37. doi: 10.1007/s13311-012-0107-z.

Genetic manipulation of cell death and neuroplasticity pathways in traumatic brain injury.

Author information

1
Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, B473 Biomedical and Biological Sciences Research Building-BBSRB, 741 South Limestone Street, Lexington, KY 40536, USA.

Abstract

Traumatic brain injury (TBI) initiates a complex cascade of secondary neurodegenerative mechanisms contributing to cell dysfunction and necrotic and apoptotic cell death. The injured brain responds by activating endogenous reparative processes to counter the neurodegeneration or remodel the brain to enhance functional recovery. A vast array of genetically altered mice provide a unique opportunity to target single genes or proteins to better understand their role in cell death and endogenous repair after TBI. Among the earliest targets for transgenic and knockout studies in TBI have been programmed cell death mediators, such as the Bcl-2 family of proteins, caspases, and caspase-independent pathways. In addition, the role of cell cycle regulatory elements in the posttraumatic cell death pathway has been explored in mouse models. As interest grows in neuroplasticity in TBI, the use of transgenic and knockout mice in studies focused on gliogenesis, neurogenesis, and the balance of growth-promoting and growth-inhibiting molecules has increased in recent years. With proper consideration of potential effects of constitutive gene alteration, traditional transgenic and knockout models can provide valuable insights into TBI pathobiology. Through increasing sophistication of conditional and cell-type specific genetic manipulations, TBI studies in genetically altered mice will be increasingly useful for identification and validation of novel therapeutic targets.

PMID:
22362424
PMCID:
PMC3337028
DOI:
10.1007/s13311-012-0107-z
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center