Format

Send to

Choose Destination
Appl Microbiol Biotechnol. 2012 May;94(3):651-8. doi: 10.1007/s00253-011-3774-5. Epub 2012 Feb 25.

Enhanced production of 2,3-butanediol by engineered Bacillus subtilis.

Author information

1
Organization of Advance Science and Technology, Kobe University, Kobe 657-8501, Japan.

Abstract

Production of 2,3-butanediol by Bacillus subtilis takes place in late-log or stationary phase, depending on the expression of bdhA gene encoding acetoin reductase, which converts acetoin to 2,3-butanediol. The present work focuses on the development of a strain of B. subtilis for enhanced production of 2,3-butanediol in early log phase of growth cycle. For this, the bdhA gene was expressed under the control of P( alsSD ) promoter of AlsSD operon for acetoin fermentation which served the substrate for 2,3-butanediol production. Addition of acetic acid in the medium induced the production of 2,3-butanediol by 2-fold. Two-step aerobic-anaerobic fermentation further enhanced 2,3-butanediol production by 4-fold in comparison to the control parental strain. Thus, addition of acetic acid and low dissolved oxygen in the medium are involved in activation of bdhA gene expression from P( alsSD ) promoter in early log phase. Under the conditions tested in this work, the maximum production of 2,3-butanediol, 2.1 g/l from 10 g/l glucose, was obtained at 24 h. Furthermore, under the optimized microaerophilic condition, the production of 2,3-butanediol improved up to 6.1 g/l and overall productivity increased by 6.7-fold to 0.4 g/l h in the engineered strain compared to that in the parental control.

PMID:
22361854
DOI:
10.1007/s00253-011-3774-5
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center