Format

Send to

Choose Destination
Proteins. 1990;8(2):118-32.

Crystal structure of a protein-toxin alpha 1-purothionin at 2.5A and a comparison with predicted models.

Author information

1
Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02167.

Abstract

Alpha 1-Purothionin (alpha 1-P), a wheatgerm protein and lytic toxin, has a secondary and tertiary structure similar to that of crambin as revealed by CD and NMR studies. alpha 1-P crystallizes in the tetragonal space group 1422 with unit cell dimensions: a = b = 53.59 and c = 69.79 A. X-ray diffraction data have been measured to 2.5 A Bragg spacing. The crystal structure has been determined by molecular replacement methods, using an energy-minimized alpha 1-P model structure derived from crambin (Whitlow and Teeter: Journal of Biomolecular Structure and Dynamics 2:831-848, 1985, Journal of the American Chemical Society 108:7163-7172, 1986). The energy-minimized model gives a slightly cleaner rotation solution and better refinement against the x-ray data than do the crambin or unminimized alpha 1-P structures. The final crystallographic residual with the data in the 10-2.5 A resolution range is 0.216. The refined alpha 1-P structure has a backbone rms difference of 0.74 A from crambin and 0.55 A from the energy-minimized alpha 1-P model. A low resolution NMR model of alpha 1-P calculated from metric matrix distance geometry and restrained molecular dynamics differs from crambin's backbone by 2.3 A rms deviation (Clore et al.: EMBO Journal 5:2729-2735, 1986). Backbone dihedral angles for our predicted model differ from the refined alpha 1-P structure in only one region (at a turn where there is a deletion relative to crambin). The NMR model had differences in four regions.

PMID:
2235992
DOI:
10.1002/prot.340080203
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center