Format

Send to

Choose Destination
Sci Rep. 2011;1:150. doi: 10.1038/srep00150. Epub 2011 Nov 9.

SIRT1 associates with eIF2-alpha and regulates the cellular stress response.

Author information

1
Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.

Abstract

SIRT1 is a NAD+ dependent protein deacetylase known to increase longevity in model organisms. SIRT1 regulates cellular response to oxidative and/or genotoxic stress by regulating proteins such as p53 and FOXO. The eukaryotic initiation factor-2, eIF2, plays a critical role in the integrated stress response pathway. Under cellular stress, phosphorylation of the alpha subunit of eIF2 is essential for immediate shut-off of translation and activation of stress response genes. Here we demonstrate that SIRT1 interacts with eIF2α. Loss of SIRT1 results in increased phosphorylation of eIF2α. However, the downstream stress induced signaling pathway is compromised in SIRT1-deficient cells, indicated by delayed expression of the downstream target genes CHOP and GADD34 and a slower post-stress translation recovery. Finally, SIRT1 co-immunoprecipitates with mediators of eIF2α dephosphorylation, GADD34 and CreP, suggesting a role for SIRT1 in the negative feedback regulation of eIF2α phosphorylation.

PMID:
22355666
PMCID:
PMC3252071
DOI:
10.1038/srep00150
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center