Send to

Choose Destination
See comment in PubMed Commons below
Sci Rep. 2011;1:143. doi: 10.1038/srep00143. Epub 2011 Nov 4.

Dynamic impact of temporal context of Ca²⁺ signals on inhibitory synaptic plasticity.

Author information

Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku , Kyoto, 606-8502, Japan. kawaguchi@neurosci.biophys


Neuronal activity-dependent synaptic plasticity, a basis for learning and memory, is tightly correlated with the pattern of increase in intracellular Ca(2+) concentration ([Ca(2+)](i)). Here, using combined application of electrophysiological experiments and systems biological simulation, we show that such a correlation dynamically changes depending on the context of [Ca(2+)](i) increase. In a cerebellar Purkinje cell, long-term potentiation of inhibitory GABA(A) receptor responsiveness (called rebound potentiation; RP) was induced by [Ca(2+)](i) increase in a temporally integrative manner through sustained activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, the RP establishment was canceled by coupling of two patterns of RP-inducing [Ca(2+)](i) increase depending on the temporal sequence. Negative feedback signaling by phospho-Thr305/306 CaMKII detected the [Ca(2+)](i) context, and assisted the feedforward inhibition of CaMKII through PDE1, resulting in the RP impairment. The [Ca(2+)](i) context-dependent dynamic regulation of synaptic plasticity might contribute to the temporal refinement of information flow in neuronal networks.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center