Format

Send to

Choose Destination
Sci Rep. 2011;1:89. doi: 10.1038/srep00089. Epub 2011 Sep 13.

Conserved properties of dendritic trees in four cortical interneuron subtypes.

Author information

1
Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki. 444-8787, Japan. yoshiy@nips.ac.jp

Abstract

Dendritic trees influence synaptic integration and neuronal excitability, yet appear to develop in rather arbitrary patterns. Using electron microscopy and serial reconstructions, we analyzed the dendritic trees of four morphologically distinct neocortical interneuron subtypes to reveal two underlying organizational principles common to all. First, cross-sectional areas at any given point within a dendrite were proportional to the summed length of all dendritic segments distal to that point. Consistent with this observation, total cross-sectional area was almost perfectly conserved at bifurcation points. Second, dendritic cross-sections became progressively more elliptical at more proximal, larger diameter, dendritic locations. Finally, computer simulations revealed that these conserved morphological features limit distance dependent filtering of somatic EPSPs and facilitate distribution of somatic depolarization into all dendritic compartments. Because these features were shared by all interneurons studied, they may represent common organizational principles underlying the otherwise diverse morphology of dendritic trees.

PMID:
22355608
PMCID:
PMC3216575
DOI:
10.1038/srep00089
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center