Send to

Choose Destination
Mol Pharm. 2012 Apr 2;9(4):762-73. doi: 10.1021/mp200470c. Epub 2012 Mar 22.

Effect of PEGylation on protein hydrodynamics.

Author information

Department of Biochemistry, University of New Hampshire, Durham, New Hampshire 06824, USA.


We studied the effect of PEGylation on protein hydrodynamic behavior using hen egg-white lysozyme (HEWL) as a model protein. HEWL was PEGylated with a linear, 20 kDa PEG using reductive amination to produce PEG1-, PEG2-, and PEG3-HEWL. Near- and far-UV-CD spectroscopy revealed no significant effect of PEGylation on HEWL higher order structure. SDS-PAGE, mass spectrometry, online static light scattering (SLS) and sedimentation velocity analytical ultracentrifugation (SV-AUC) were employed to characterize the heterogeneity and molecular weights of the purified PEG-HEWL molecules, the results of which underscored the importance of using first-principle based methods for such analyses along with the underlying complexities of characterizing PEG-protein conjugates. Hydrodynamic characterization of various linear and branched PEGs (5-40 kDa) and PEG-HEWL molecules was performed using dynamic light scattering (DLS) and SV-AUC. The PEG polymer exhibited a random-coil conformation in solution with the M(w) ∝ R(h)(n) scaling relationship yielding a scaling exponent (n) = 2.07. Singly branched PEGs were also observed to exhibit random-coil behavior with Stokes radii identical to those of their linear counterparts. SV-AUC studies of PEG-HEWL showed PEG has a "parachute" like effect on HEWL, and dramatically increases the frictional drag; PEG-HEWL also exhibited random-coil-like characteristics in solution (n = 1.8). The sedimentation coefficient (s) of PEG-HEWL remained invariant with increasing degree of PEGylation, indicating that the increase in molecular mass from PEG was compensated by an almost equivalent increase in frictional drag. Our studies draw caution to using SV-AUC for the characterization of size heterogeneity of PEG-protein mixtures.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center