Send to

Choose Destination
See comment in PubMed Commons below
J Med Chem. 2012 Mar 22;55(6):2672-87. doi: 10.1021/jm201551m. Epub 2012 Mar 6.

Synthesis and anti-HIV activities of glutamate and peptide conjugates of nucleoside reverse transcriptase inhibitors.

Author information

Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode Island 02881, United States.


Mono-, di-, and trinucleoside conjugates of glutamate or peptide scaffolds containing nucleoside reverse transcriptase inhibitors were synthesized. Among dinucleoside glutamate ester derivatives, N-myristoylated derivatives showed significantly higher anti-HIV activity than the corresponding N-acetylated conjugates against cell-free virus. Myristoyl-Glu(3TC)-FLT (46, EC(50) = 0.3-0.6 μM) and myristoyl-Glu(FTC)-FLT (47, EC(50) = 0.1-0.4 μM) derivatives were the most active glutamate-dinucleoside conjugates. A trinucleoside glutamate derivative containing AZT, FLT, and 3TC (34, EC(50) = 0.9-1.4 μM) exhibited higher anti-HIV activity than AZT and 3TC against cell-free virus. Compound 34 also exhibited higher anti-HIV activity against multidrug (IC(50) = 5.9 nM) and NNRTI (IC(50) = 12.9 nM) resistant viruses than parent nucleosides. The physical mixture containing FLT-succinate, AZT, 3TC, and glutamic acid exhibited 115-fold less activity against cell associated virus (EC(50) = 91.9 μM) when compared to 34 (EC(50) = 0.8 μM). Other conjugates showed less or comparable potency to that of the corresponding physical mixtures.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center