Format

Send to

Choose Destination
Curr Opin Pharmacol. 2012 Jun;12(3):256-65. doi: 10.1016/j.coph.2012.01.015. Epub 2012 Feb 18.

Antioxidant pharmacological therapies for COPD.

Author information

1
Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA. irfan_rahman@urmc.rochester.edu

Abstract

Increased oxidative stress occurs in the lungs and systemically in COPD, which plays a role in many of the pathogenic mechanisms in COPD. Hence, targeting local lung and systemic oxidative stress with agents that modulate the antioxidants/redox system or boost endogenous antioxidants would be a useful therapeutic approach in COPD. Thiol antioxidants (N-acetyl-l-cysteine [NAC] and N-acystelyn, carbocysteine, erdosteine, and fudosteine) have been used to increase lung thiol content. Modulation of cigarette smoke (CS) induced oxidative stress and its consequent cellular changes have also been reported to be effected by synthetic molecules, such as spin traps (α-phenyl-N-tert-butyl nitrone), catalytic antioxidants (superoxide dismutase [ECSOD] mimetics), porphyrins, and lipid peroxidation and protein carbonylation blockers/inhibitors (edaravone and lazaroids/tirilazad). Preclinical and clinical trials have shown that these antioxidants can reduce oxidative stress, affect redox and glutathione biosynthesis genes, and proinflammatory gene expression. In this review the approaches to enhance lung antioxidants in COPD and the potential beneficial effects of antioxidant therapy on the course of the disease are discussed.

PMID:
22349417
PMCID:
PMC3768007
DOI:
10.1016/j.coph.2012.01.015
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center