Send to

Choose Destination
Mol Microbiol. 1990 Jul;4(7):1119-28.

Sequence, localization and function of the invasin protein of Yersinia enterocolitica.

Author information

Department of Microbiology, Stanford University, California 94305.


The inv locus of Yersinia enterocolitica is sufficient to convert a non-invasive Escherichia coli K12 strain into a microorganism that is able to penetrate cultured mammalian cells. The nucleotide sequence of inv reveals an open reading frame corresponding to an 835-amino-acid protein that is homologous to the invasin protein from Yersinia pseudotuberculosis. A polyclonal antiserum elicited by a synthetic peptide corresponding to the C-terminal 88 amino acids of this open reading frame detected a unique 100 kD protein in cell lysates of Y. enterocolitica strain 8081 c and in an E. coli strain harbouring the cloned inv gene. This protein localized to the outer membranes of both microorganisms and was cleaved by low concentrations of extracellular trypsin. HEp-2 cells were shown to attach to surfaces coated with bacterial outer membranes containing invasin and this attachment was destroyed by treatment of the membranes with trypsin. Thus it appears that the invasin protein from Y. enterocolitica is able to mediate both attachment to and entry of cultured epithelial cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center