Format

Send to

Choose Destination
Opt Express. 2012 Jan 30;20(3):3345-52. doi: 10.1364/OE.20.003345.

Sub-diffraction thin-film sensing with planar terahertz metamaterials.

Author information

1
School of Electrical & Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia. withawat@eleceng.adelaide.edu.au

Abstract

Planar metamaterials consisting of subwavelength resonators have been recently proposed for thin dielectric film sensing in the terahertz frequency range. Although the thickness of the dielectric film can be very small compared with the wavelength, the required area of sensed material is still determined by the diffraction-limited spot size of the terahertz beam excitation. In this article, terahertz near-field sensing is utilized to reduce the spot size. By positioning the metamaterial sensing platform close to the sub-diffraction terahertz source, the number of excited resonators, and hence minimal film area, are significantly reduced. As an additional advantage, a reduction in the number of excited resonators decreases the inter-cell coupling strength, and consequently the resonance Q factor is remarkably increased. The experimental results show that the resonance Q factor is improved by more than a factor of two compared to the far-field measurement. Moreover, for a film with a thickness of λ/375 the minimal area can be as small as 0.2λ × 0.2λ. The success of this work provides a platform for future metamaterial-based sensors for biomolecular detection.

PMID:
22330572
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center