Send to

Choose Destination
J Med Chem. 2012 Mar 8;55(5):2125-43. doi: 10.1021/jm201348t. Epub 2012 Feb 27.

Fluorescent derivatives of AC-42 to probe bitopic orthosteric/allosteric binding mechanisms on muscarinic M1 receptors.

Author information

Unité Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, BP 10413, 67412 Illkirch, France.


Two fluorescent derivatives of the M1 muscarinic selective agonist AC-42 were synthesized by coupling the lissamine rhodamine B fluorophore (in ortho and para positions) to AC42-NH(2). This precursor, prepared according to an original seven-step procedure, was included in the study together with the LRB fluorophore (alone or linked to an alkyl chain). All these compounds are antagonists, but examination of their ability to inhibit or modulate orthosteric [(3)H]NMS binding revealed that para-LRB-AC42 shared several properties with AC-42. Carefully designed experiments allowed para-LRB-AC42 to be used as a FRET tracer on EGFP-fused M1 receptors. Under equilibrium binding conditions, orthosteric ligands, AC-42, and the allosteric modulator gallamine behaved as competitors of para-LRB-AC42 binding whereas other allosteric compounds such as WIN 51,708 and N-desmethylclozapine were noncompetitive inhibitors. Finally, molecular modeling studies focused on putative orthosteric/allosteric bitopic poses for AC-42 and para-LRB-AC42 in a 3D model of the human M1 receptor.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center