Send to

Choose Destination
Appl Biochem Biotechnol. 2012 Mar;166(6):1586-603. doi: 10.1007/s12010-012-9565-3. Epub 2012 Feb 11.

Characterization of cellulolytic extract from Pycnoporus sanguineus PF-2 and its application in biomass saccharification.

Author information

Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.


The aim of this work was to evaluate the biochemical features of the white-rot fungi Pycnoporus sanguineus cellulolytic complex and its utilization to sugarcane bagasse hydrolysis. When cultivated under submerged fermentation using corn cobs as carbon source, P. sanguineus produced high FPase, endoglucanase, β-glucosidase, xylanase, mannanase, α-galactosidase, α-arabinofuranosidase, and polygalacturonase activities. Cellulase activities were characterized in relation to pH and temperature. β-Glucosidase and FPase activities were higher at 55 °C, pH 4.5, and endoglucanase activity was higher at 60 °C, in a pH range of 3.5-4.0. All cellulase activities were highly stable at 40 and 50 °C through 48 h of pre-incubation. Crude enzymatic extract from P. sanguineus was applied in a saccharification experiment using acid-treated and alkali-treated sugarcane bagasse as substrate, and the hydrolysis yields were compared to that obtained by a commercial cellulase preparation. Reducing sugar yields of 60.4% and 64.0% were reached when alkali-treated bagasse was hydrolyzed by P. sanguineus extract and commercial cellulase, respectively. Considering the glucose production, it was observed that P. sanguineus extract and commercial cellulase ensured yields of 22.6% and 36.5%, respectively. The saccharification of acid-treated bagasse was lower than that of alkali-treated bagasse regardless of the cellulolytic extract. The present work showed that P. sanguineus has a great potential as an enzyme producer for biomass saccharification.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center