Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3287-92. doi: 10.1073/pnas.1116455109. Epub 2012 Feb 10.

Composite low affinity interactions dictate recognition of the cyclin-dependent kinase inhibitor Sic1 by the SCFCdc4 ubiquitin ligase.

Author information

  • 1Center for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, ON, Canada M5G 1X5.

Abstract

The ubiquitin ligase SCF(Cdc4) (Skp1/Cul1/F-box protein) recognizes its substrate, the cyclin-dependent kinase inhibitor Sic1, in a multisite phosphorylation-dependent manner. Although short diphosphorylated peptides derived from Sic1 can bind to Cdc4 with high affinity, through systematic mutagenesis and quantitative biophysical analysis we show that individually weak, dispersed Sic1 phospho sites engage Cdc4 in a dynamic equilibrium. The affinities of individual phosphoepitopes serve to tune the overall phosphorylation site threshold needed for efficient recognition. Notably, phosphoepitope affinity for Cdc4 is dramatically weakened in the context of full-length Sic1, demonstrating the importance of regional environment on binding interactions. The multisite nature of the Sic1-Cdc4 interaction confers cooperative dependence on kinase activity for Sic1 recognition and ubiquitination under equilibrium reaction conditions. Composite dynamic interactions of low affinity sites may be a general mechanism to establish phosphorylation thresholds in biological responses.

PMID:
22328159
PMCID:
PMC3295303
DOI:
10.1073/pnas.1116455109
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center