Format

Send to

Choose Destination
J Trauma Acute Care Surg. 2012 Feb;72(2):422-7. doi: 10.1097/TA.0b013e3182452444.

Does size matter? A prospective analysis of 28-32 versus 36-40 French chest tube size in trauma.

Author information

1
Division of Trauma and Surgical Critical Care, Los Angeles County and the University of Southern California Medical Center, USC-Keck School of Medicine, Los Angeles, CA 90033, USA. kinaba@surgery.usc.edu

Abstract

BACKGROUND:

The optimal chest tube size for the drainage of traumatic hemothoraces and pneumothoraces is unknown. The purpose of this study was to compare the efficacy of small versus large chest tubes for use in thoracic trauma. Our hypothesis was that (1) there would be no difference in clinically relevant outcomes including retained hemothoraces, the need for additional tube insertion, and invasive procedures and (2) there would be an increase in pain with the insertion of large versus small tubes.

METHODS:

This is a prospective, institutional review board-approved observational study. All patients requiring open chest tube drainage within 12 hours of admission (January 2007-January 2010) were identified at a Level I trauma center. Clinical demographic data and outcomes including efficacy of drainage, complications, retained hemothoraces, residual pneumothoraces, need for additional tube insertion, video-assisted thoracoscopy, and thoracotomy were collected and analyzed by tube size. Small chest tubes (28-32 Fr) were compared with large (36-40 Fr).

RESULTS:

During the study period, a total of 353 chest tubes (small: 186; large: 167) were placed in 293 patients. Of the 275 chest tubes inserted for a hemothorax, 144 were small (52.3%) and 131 were large (47.7%). Both groups were similar in age, gender, and mechanism; however, large tubes were placed more frequently in patients with a Glasgow Coma Scale ≤8, severe head injury, a systolic blood pressure <90 mm Hg, and Injury Severity Score ≤25. The volume of blood drained initially and the total duration of tube placement were similar for both groups (small: 6.3 ± 3.9 days vs. large: 6.2 ± 3.6 days; adjusted (adj.) p = 0.427). After adjustment, no statistically significant difference in tube-related complications, including pneumonia (4.9% vs. 4.6%; adj. p = 0.282), empyema (4.2% vs. 4.6%; adj. p = 0.766), or retained hemothorax (11.8% vs. 10.7%; adj. p = 0.981), was found when comparing small versus large chest tubes. The need for tube reinsertion, image-guided drainage, video-assisted thoracoscopy, and thoracotomy was likewise the same (10.4% vs. 10.7%; adj. p = 0.719). For patients with a pneumothorax requiring chest tube drainage (n = 238), there was no difference in the number of patients with an unresolved pneumothorax (14.0% vs. 13.0%; adj. p = 0.620) or those needing reinsertion of a second chest tube. The mean visual analog pain score was similar for small and large tubes (6.0 ± 3.3 and 6.7 ± 3.0; p = 0.237).

CONCLUSIONS:

For injured patients with chest trauma, chest tube size did not impact the clinically relevant outcomes tested. There was no difference in the efficacy of drainage, rate of complications including retained hemothorax, need for additional tube drainage, or invasive procedures. Furthermore, tube size did not affect the pain felt by patients at the site of insertion.

LEVEL OF EVIDENCE:

: II.

PMID:
22327984
DOI:
10.1097/TA.0b013e3182452444
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center