The para-substituent effect and pH-dependence of the organometallic Baeyer-Villiger oxidation of rhenium-carbon bonds

Dalton Trans. 2012 Apr 7;41(13):3758-63. doi: 10.1039/c2dt11984f. Epub 2012 Feb 13.

Abstract

We studied the Baeyer-Villiger (BV) type oxidation of phenylrhenium trioxide (PTO) by H(2)O(2) in the aqueous phase using Quantum Mechanics (density functional theory with the M06 functional) focusing on how the solution pH and the para-substituent affect the Gibbs free energy surfaces. For both PTO and MTO (methylrhenium trioxide) cases, we find that for pH > 1 the BV pathway having OH(-) as the leaving group is lower in energy than the one involving simultaneous protonation of hydroxide. We also find that during this organometallic BV oxidation, the migrating phenyl is a nucleophile so that substituting functional groups in the para-position of phenyl with increased electron-donating character lowers the migration barrier, just as in organic BV reactions. However, this substituent effect also pushes electron density to Re, impeding HOO(-) coordination and slowing down the reaction. This is in direct contrast to the organic analog, in which para-substitution has an insignificant influence on 1,2-addition of peracids. Due to the competition of the two opposing effects and the dependence of the resting state on pH and concentration, the reaction rate of the organometallic BV oxidation is surprisingly unaffected by para-substitution.