Characterization and mechanism analysis of Mo-N-co-doped TiO2 nano-photocatalyst and its enhanced visible activity

J Colloid Interface Sci. 2012 Apr 15;372(1):1-5. doi: 10.1016/j.jcis.2011.11.071. Epub 2011 Dec 6.

Abstract

In this study, Mo-N-co-doped TiO(2) nano-photocatalysts have been synthesized through hydrolysis-precipitation method, combined with sonication posttreatment. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). XRD showed that co-doping with Mo and N favored the formation of anatase and retarded the growth of crystallite size. XPS revealed that N was incorporated into the lattice of TiO(2) through substituting oxygen atoms and coexisted in the forms of β-N and γ-N in co-doped TiO(2). Meanwhile, Mo was also incorporated into the lattice of TiO(2) through substituting titanium atoms and existed in the form of Mo(6+). DRS indicated that the light absorbance in visible region was improved by co-doping with Mo and N, leading to a narrower band gap and higher visible light photocatalytic activity for the degradation of phenol than that of pure and N-doped TiO(2). The enhanced visible light photocatalytic activity of Mo-N-co-doped TiO(2) nano-photocatalyst was attributed to the small crystallite size, narrow band gap and intense light absorbance in visible region. This study provides a new method to synthesize visible light active TiO(2)-based photocatalyst.