Send to

Choose Destination
Immunobiology. 2012 Sep;217(9):926-34. doi: 10.1016/j.imbio.2012.01.001. Epub 2012 Jan 4.

Regulation of SHP2 by PTEN/AKT/GSK-3β signaling facilitates IFN-γ resistance in hyperproliferating gastric cancer.

Author information

Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.


Oncogenic activation accompanied by escape from immune surveillance, such as IFN-γ resistance, is critical for cancer cell growth and survival. In this study, we investigated the crosstalk signaling between IFN-γ resistance and signaling of hyperproliferation in gastric cancer cells. IFN-γ inhibited the cell growth of MKN45 cells but not hyperproliferating AGS cells. AGS cells did not respond to IFN-γ because of a decrease in STAT1 but not due to dysfunctional IFN-γ receptors. Signaling of PI3K/AKT, as well as MEK/ERK, was required for the hyperproliferation; notably, PI3K/AKT alone mediated the IFN-γ resistance. Aberrant Src homology-2 domain-containing phosphatase (SHP) 2 determined IFN-γ resistance but unexpectedly had no effects on hyperproliferation or ERK activation. In the IFN-γ resistant cells, inactivation of glycogen synthase kinase (GSK)-3β by PI3K/AKT was important for SHP2 activation but not for hyperproliferation. An imbalance of AKT/GSK-3β/SHP2 caused by a reduction of PTEN was important for the crosstalk between IFN-γ resistance and hyperproliferation. PI3K is constitutively expressed in AGS cells and immunohistochemical staining showed a correlation between hyperproliferation and expression of SHP2 and STAT1 in gastric tumors. These results demonstrate the effects of PTEN/AKT/GSK-3β/SHP2 signaling on IFN-γ resistance in hyperproliferating gastric cancer cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center