Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2012 Jun;40(11):5171-9. doi: 10.1093/nar/gks010. Epub 2012 Feb 9.

Novel RNA base pair with higher specificity using single selenium atom.

Author information

1
Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA.

Abstract

Specificity of nucleobase pairing provides essential foundation for genetic information storage, replication, transcription and translation in all living organisms. However, the wobble base pairs, where U in RNA (or T in DNA) pairs with G instead of A, might compromise the high specificity of the base pairing. The U/G wobble pairing is ubiquitous in RNA, especially in non-coding RNA. In order to increase U/A pairing specificity, we have hypothesized to discriminate against U/G wobble pair by tailoring the steric and electronic effects at the 2-exo position of uridine and replacing the 2-exo oxygen with a selenium atom. We report here the first synthesis of the 2-Se-U-RNAs as well as the 2-Se-uridine ((Se)U) phosphoramidite. Our biophysical and structural studies of the (Se)U-RNAs indicate that this single atom replacement can indeed create a novel U/A base pair with higher specificity than the natural one. We reveal that the (Se)U/A pair maintains a structure virtually identical to the native U/A base pair, while discriminating against U/G wobble pair. This oxygen replacement with selenium offers a unique chemical strategy to enhance the base pairing specificity at the atomic level.

PMID:
22323523
PMCID:
PMC3367167
DOI:
10.1093/nar/gks010
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center