Format

Send to

Choose Destination
J Radiat Res. 2012;53(1):33-43.

The metabolomic approach identifies a biological signature of low-dose chronic exposure to cesium 137.

Author information

1
Institut de Radioprotection et de Sûreté Nucléaire, DRPH, SRBE, LRTOX,    Fontenay-aux Roses, France.

Abstract

Reports have described apparent biological effects of (137)Cs (the most persistent dispersed radionuclide) irradiation in people living in Chernobyl-contaminated territory. The sensitive analytical technology described here should now help assess the relation of this contamination to the observed effects. A rat model chronically exposed to (137)Cs through drinking water was developed to identify biomarkers of radiation-induced metabolic disorders, and the biological impact was evaluated by a metabolomic approach that allowed us to detect several hundred metabolites in biofluids and assess their association with disease states. After collection of plasma and urine from contaminated and non-contaminated rats at the end of the 9-months contamination period, analysis with a LC-MS system detected 742 features in urine and 1309 in plasma. Biostatistical discriminant analysis extracted a subset of 26 metabolite signals (2 urinary, 4 plasma non-polar, and 19 plasma polar metabolites) that in combination were able to predict from 68 up to 94% of the contaminated rats, depending on the prediction method used, with a misclassification rate as low as 5.3%. The difference in this metabolic score between the contaminated and non-contaminated rats was highly significant (P = 0.019 after ANOVA cross-validation). In conclusion, our proof-of-principle study demonstrated for the first time the usefulness of a metabolomic approach for addressing biological effects of chronic low-dose contamination. We can conclude that a metabolomic signature discriminated (137)Cs-contaminated from control animals in our model. Further validation is nevertheless required together with full annotation of the metabolic indicators.

PMID:
22302043
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center