Send to

Choose Destination
See comment in PubMed Commons below
Mol Pharm. 2012 Mar 5;9(3):645-53. doi: 10.1021/mp200592m. Epub 2012 Jan 31.

Positron emission tomography and optical imaging of tumor CD105 expression with a dual-labeled monoclonal antibody.

Author information

Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, United States.


CD105 (endoglin) is an independent prognostic marker for poor prognosis in >10 solid tumor types, including breast cancer. The goal of this study was to develop a CD105-specific agent for both positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging, which can have potential clinical applications in diagnosis and imaged-guided surgery of breast cancer. TRC105, a chimeric anti-CD105 monoclonal antibody, was labeled with both a NIRF dye (i.e., 800CW) and (64)Cu to yield (64)Cu-NOTA-TRC105-800CW. Flow cytometry analysis revealed no difference in CD105 binding affinity/specificity between TRC105 and NOTA-TRC105-800CW. Serial PET imaging revealed that the 4T1 murine breast tumor uptake of (64)Cu-NOTA-TRC105-800CW was 5.2 ± 2.7, 11.0 ± 1.4, and 13.0 ± 0.4% ID/g at 4, 24, and 48 h postinjection respectively. Tumor uptake as measured by ex vivo NIRF imaging exhibited a good linear correlation with the % ID/g values obtained from PET (R = 0.74). Biodistribution data were consistent with the PET/NIRF findings. Blocking experiments, control studies with dual-labeled cetuximab (an isotype-matched control antibody), and histology confirmed the CD105 specificity of (64)Cu-NOTA-TRC105-800CW. Successful PET/NIRF imaging of CD105 expression warrants further investigation and clinical translation of dual-labeled TRC105-based imaging agents.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center