Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biochem. 1990 Jul;108(1):9-16.

Kinetics of hydroperoxide degradation by NADP-glutathione system in mitochondria.

Author information

1
Department of Physiological Chemistry, Osaka University Medical School.

Abstract

Hydroperoxide decomposition by the NADP-glutathione system in rat liver mitochondria was analyzed. Mitochondria were found to contain high concentrations of the reduced form of glutathione (GSH) (4.32 +/- 0.50 nmol/mg) and NADPH (4.74 +/- 0.64 nmol/mg), and high activities of glutathione peroxidase and reductase. In the initial phase of the reaction, the rate of hydroperoxide decomposition was proportional to both the GSH level and the activity of GSH peroxidase. However, in the later steady state, the step of NADP reduction was rate-limiting, and the overall reaction rate was independent of the initial concentration of GSH, and activities of glutathione peroxidase and reductase. Some GSH was released from mitochondria during incubation, but the rate of the decomposition could be simply expressed as kappa [GSH]/2, where kappa is the first-order rate constant of the peroxidase and [GSH] is the intramitochondrial level of GSH in the steady state. The rate of the reaction in the steady state was also dependent on the NADPH level, its reciprocal being linearly correlated with [NADPH]-1. The rate of decomposition of hydroperoxide was influenced by the respiratory state. During state 3 respiration, the rate was greatly depressed, but was still considered to exceed by far the rate of physiological generation of hydroperoxide.

PMID:
2229015
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center