Send to

Choose Destination
See comment in PubMed Commons below
Physiol Plant. 2012 Jul;145(3):426-39. doi: 10.1111/j.1399-3054.2012.01585.x. Epub 2012 Mar 14.

Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803.

Author information

Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands.


Sequential adaptation to nitrogen deprivation and ultimately to full starvation requires coordinated adjustment of cellular functions. We investigated changes in gene expression and cell physiology of the cyanobacterium Synechocystis PCC 6803 during 96 h of nitrogen starvation. During the first 6 h, the transcriptome showed activation of nitrogen uptake and assimilation systems and of the core nitrogen and carbon assimilation regulators. However, the nitrogen-deprived cells still grew at the same rate as the control and even showed transiently increased expression of phycobilisome genes. After 12 h, cell growth decreased and chlorosis started with degradation of the nitrogen-rich phycobilisomes. During this phase, the transcriptome showed suppression of genes for phycobilisomes, for carbon fixation and for de novo protein synthesis. Interestingly, photosynthetic activity of both photosystem I (PSI) and photosystem II was retained quite well. Excess electrons were quenched by the induction of terminal oxidase and hydrogenase genes, compensating for the diminished carbon fixation and nitrate reduction activity. After 48 h, the cells ceased most activities. A marked exception was the retained PSI gene transcription, possibly this supports the viability of Synechocystis cells and enables rapid recovery after relieving from nitrogen starvation. During early recovery, many genes changed expression, supporting the resumed cellular activity. In total, our results distinguished three phases during gradual nitrogen depletion: (1) an immediate response, (2) short-term acclimation and (3) long-term survival. This shows that cyanobacteria respond to nitrogen starvation by a cascade of physiological adaptations reflected by numerous changes in the transcriptome unfolding at different timescales.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center