Format

Send to

Choose Destination
PLoS One. 2012;7(1):e29211. doi: 10.1371/journal.pone.0029211. Epub 2012 Jan 18.

Chemotaxis of cell populations through confined spaces at single-cell resolution.

Author information

1
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.

Abstract

Cell migration is crucial for both physiological and pathological processes. Current in vitro cell motility assays suffer from various drawbacks, including insufficient temporal and/or optical resolution, or the failure to include a controlled chemotactic stimulus. Here, we address these limitations with a migration chamber that utilizes a self-sustaining chemotactic gradient to induce locomotion through confined environments that emulate physiological settings. Dynamic real-time analysis of both population-scale and single-cell movement are achieved at high resolution. Interior surfaces can be functionalized through adsorption of extracellular matrix components, and pharmacological agents can be administered to cells directly, or indirectly through the chemotactic reservoir. Direct comparison of multiple cell types can be achieved in a single enclosed system to compare inherent migratory potentials. Our novel microfluidic design is therefore a powerful tool for the study of cellular chemotaxis, and is suitable for a wide range of biological and biomedical applications.

PMID:
22279529
PMCID:
PMC3261140
DOI:
10.1371/journal.pone.0029211
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center