Format

Send to

Choose Destination
See comment in PubMed Commons below
Hepatology. 2012 Jul;56(1):291-9. doi: 10.1002/hep.25615. Epub 2012 Jun 18.

Inhibition of hepcidin transcription by growth factors.

Author information

1
Department of Pathology, University of California, Los Angeles, CA 90095-1690, USA.

Abstract

The hepatic peptide hormone hepcidin controls the duodenal absorption of iron, its storage, and its systemic distribution. Hepcidin production is often insufficient in chronic hepatitis C and alcoholic liver disease, leading to hyperabsorption of iron and its accumulation in the liver. Hepatocyte growth factor (HGF) and epidermal growth factor (EGF) mediate hepatic regeneration after liver injury. We examined the effect of these growth factors on hepcidin synthesis by hepatocytes. HGF and EGF treatment of primary mouse hepatocytes, as well as EGF administration in mice, suppressed hepcidin messenger RNA (mRNA) synthesis. The suppression of hepcidin by these growth factors was transcriptional, and was mediated by a direct effect of HGF and EGF on the bone morphogenetic protein (BMP) pathway regulating hepcidin synthesis. We further show that growth factors interfered with nuclear localization of activated sons of mothers against decapentaplegic (Smad) and increased the nuclear pool of the BMP transcriptional corepressor TG-interacting factor (TGIF). In a kinase screen with small-molecule kinase inhibitors, inhibitors in the PI3 kinase pathway and in the mitogen-activated ERK kinase/extracellular signal-regulated kinase (MEK/ERK) pathway prevented HGF suppression of hepcidin in primary mouse hepatocytes.

CONCLUSION:

HGF and EGF suppress hepatic hepcidin synthesis, in part through PI3 kinase MEK/ERK kinase pathways which may be modulating the nuclear localization of BMP pathway transcriptional regulators including activated Smads1/5/8 and the corepressor TGIF. EGF, HGF, and possibly other growth factors that activate similar pathways may contribute to hepcidin suppression in chronic liver diseases, promote iron accumulation in the liver, and exacerbate the destructive disease processes.

PMID:
22278715
PMCID:
PMC3362690
DOI:
10.1002/hep.25615
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center