Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(1):e30391. doi: 10.1371/journal.pone.0030391. Epub 2012 Jan 17.

Male attractiveness is influenced by UV wavelengths in a newt species but not in its close relative.

Author information

GECCO, Group Ecology and Conservation of Vertebrates, University of Angers, Angers, France.



Functional communication in the UV range has been reported in Invertebrates and all major groups of Vertebrates but Amphibians. Although perception in this wavelength range has been shown in a few species, UV signalling has not been demonstrated in this group. One reason may be that in lentic freshwater habitats, litter decomposition generates dissolved organic carbon that absorbs UV radiation and thus hinders its use for visual signalling. We tested the effect of male UV characteristics on female sexual preference in two newt species that experience contrasting levels of UV water transmission when breeding.


We analysed water spectral characteristics of a sample of breeding ponds in both species. We quantified male ventral coloration and measured male attractiveness under two lighting conditions (UV present, UV absent) using a no-choice female preference design. UV transmission was higher in Lissotriton vulgaris breeding sites. Male UV patterns also differed between experimental males of the two species. We observed a first common peak around 333 nm, higher in L. vulgaris, and a second peak around 397 nm, more frequent and higher in L. helveticus. Male attractiveness was significantly reduced in L. vulgaris when UV was not available but not in L. helveticus. Male attractiveness depended on the hue of the first UV peak in L. vulgaris.


Our study is the first report of functional UV-based communication in Amphibians. Interestingly, male spectral characteristics and female preferences were consistent with the differences in habitat observed between the two species as L. helveticus often breeds in ponds containing more UV blocking compounds. We discuss the three hypotheses proposed so far for UV signalling in animals (enhanced signal detectability, private communication channel, indicator of individual quality).

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center