Format

Send to

Choose Destination
Cell. 2012 Jan 20;148(1-2):150-63. doi: 10.1016/j.cell.2011.11.024.

Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function.

Author information

1
Department of Physiology, McGill University, Montréal, Quebec H3E 1Y6, Canada.

Abstract

The folding and misfolding mechanism of multidomain proteins remains poorly understood. Although thermodynamic instability of the first nucleotide-binding domain (NBD1) of ΔF508 CFTR (cystic fibrosis transmembrane conductance regulator) partly accounts for the mutant channel degradation in the endoplasmic reticulum and is considered as a drug target in cystic fibrosis, the link between NBD1 and CFTR misfolding remains unclear. Here, we show that ΔF508 destabilizes NBD1 both thermodynamically and kinetically, but correction of either defect alone is insufficient to restore ΔF508 CFTR biogenesis. Instead, both ΔF508-NBD1 energetic and the NBD1-MSD2 (membrane-spanning domain 2) interface stabilization are required for wild-type-like folding, processing, and transport function, suggesting a synergistic role of NBD1 energetics and topology in CFTR-coupled domain assembly. Identification of distinct structural deficiencies may explain the limited success of ΔF508 CFTR corrector molecules and suggests structure-based combination corrector therapies. These results may serve as a framework for understanding the mechanism of interface mutation in multidomain membrane proteins.

PMID:
22265408
PMCID:
PMC3431169
DOI:
10.1016/j.cell.2011.11.024
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center