Format

Send to

Choose Destination
Arthritis Res Ther. 2012 Jan 20;14(1):R16. doi: 10.1186/ar3695.

Tight regulation of wingless-type signaling in the articular cartilage - subchondral bone biomechanical unit: transcriptomics in Frzb-knockout mice.

Author information

1
Laboratory for Skeletal Development and Joint Disorders, Department of Development and Regeneration, KU Leuven, Belgium. Rik.Lories@med.kuleuven.be

Abstract

INTRODUCTION:

The aim of this research was to study molecular changes in the articular cartilage and subchondral bone of the tibial plateau from mice deficient in frizzled-related protein (Frzb) compared to wild-type mice by transcriptome analysis.

METHODS:

Gene-expression analysis of the articular cartilage and subchondral bone of three wild-type and three Frzb-/- mice was performed by microarray. Data from three wild-type and two Frzb-/- samples could be used for pathway analysis of differentially expressed genes and were explored with PANTHER, DAVID and GSEA bioinformatics tools. Activation of the wingless-type (WNT) pathway was analysed using Western blot. The effects of Frzb gain and loss of function on chondrogenesis and cell proliferation was examined using ATDC5 micro-masses and mouse ribcage chondrocytes.

RESULTS:

Extracellular matrix-associated integrin and cadherin pathways, as well as WNT pathway genes were up-regulated in Frzb-/- samples. Several WNT receptors, target genes and other antagonists were up-regulated, but no difference in active β-catenin was found. Analysis of ATDC5 cell micro-masses overexpressing FRZB indicated an up-regulation of aggrecan and Col2a1, and down-regulation of molecules related to damage and repair in cartilage, Col3a1 and Col5a1. Silencing of Frzb resulted in down-regulation of aggrecan and Col2a1. Pathways associated with cell cycle were down-regulated in this transcriptome analysis. Ribcage chondrocytes derived from Frzb-/- mice showed decreased proliferation compared to wild-type cells.

CONCLUSIONS:

Our analysis provides evidence for tight regulation of WNT signalling, shifts in extracellular matrix components and effects on cell proliferation and differentiation in the articular cartilage - subchondral bone unit in Frzb-/- mice. These data further support an important role for FRZB in joint homeostasis and highlight the complex biology of WNT signaling in the joint.

PMID:
22264237
PMCID:
PMC3392806
DOI:
10.1186/ar3695
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center