Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Mol Life Sci. 2012 Jun;69(12):2057-73. doi: 10.1007/s00018-011-0912-2. Epub 2012 Jan 20.

Monoubiquitination of nuclear RelA negatively regulates NF-κB activity independent of proteasomal degradation.

Author information

  • 1Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.

Abstract

Termination and resolution of inflammation are tightly linked to the inactivation of one of its strongest inducers, NF-κB. While canonical post-stimulus inactivation is achieved by upregulation of inhibitory molecules that relocate NF-κB complexes to the cytoplasm, termination of the NF-κB response can also be accomplished directly in the nucleus by posttranslational modifications, e.g., ubiquitination of the RelA subunit. Here we reveal a functional role for RelA monoubiquitination in regulating NF-κB activity. By employing serine-to-alanine mutants, we found that hypo-phosphorylated nuclear RelA is monoubiquitinated on multiple lysine residues. Ubiquitination was reversed by IκBα expression and was reduced when nuclear translocation was inhibited. RelA monoubiquitination decreased NF-κB transcriptional activity despite prolonged nuclear presence and independently of RelA degradation, possibly through decreased CREB-binding protein (CBP) co-activator binding. Polyubiquitin-triggered proteasomal degradation has been proposed as a model for RelA inactivation. However, here we show that proteasomal inhibition, similar to RelA hypo-phosphorylation, resulted in nuclear translocation and monoubiquitination of RelA. These findings indicate a degradation-independent mechanism for regulating the activity of nuclear RelA by ubiquitination.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk