Format

Send to

Choose Destination
Kidney Int. 2012 Apr;81(7):662-73. doi: 10.1038/ki.2011.443. Epub 2012 Jan 18.

Inhibition of glycogen synthase kinase-3β prevents NSAID-induced acute kidney injury.

Author information

1
Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.

Abstract

Clinical use of nonsteroidal anti-inflammatory drugs (NSAIDs) like diclofenac (DCLF) is limited by multiple adverse effects, including renal toxicity leading to acute kidney injury. In mice with DCLF-induced nephrotoxicity, TDZD-8, a selective glycogen synthase kinase (GSK)3β inhibitor, improved acute kidney dysfunction and ameliorated tubular necrosis and apoptosis associated with induced cortical expression of cyclooxygenase-2 (COX-2) and prostaglandin E2. This renoprotective effect was blunted but still largely preserved in COX-2-null mice, suggesting that other GSK3β targets beyond COX-2 functioned in renal protection. Indeed, TDZD-8 diminished the mitochondrial permeability transition in DCLF-injured kidneys. In vitro, GSK3β inhibition reinstated viability and suppressed necrosis and apoptosis in DCLF-stimulated tubular epithelial cells. DCLF elicited oxidative stress, enhanced the activity of the redox-sensitive GSK3β, and promoted a mitochondrial permeability transition by interacting with cyclophilin D, a key component of the mitochondrial permeability transition pore. TDZD-8 blocked GSK3β activity and prevented GSK3β-mediated cyclophilin D phosphorylation and the ensuing mitochondrial permeability transition, concomitant with normalization of intracellular ATP. Conversely, ectopic expression of a constitutively active GSK3β abolished the effects of TDZD-8. Hence, inhibition of GSK3β ameliorates NSAID-induced acute kidney injury by induction of renal cortical COX-2 and direct inhibition of the mitochondrial permeability transition.

PMID:
22258319
PMCID:
PMC3305839
DOI:
10.1038/ki.2011.443
[Indexed for MEDLINE]
Free PMC Article

MeSH terms, Substances, Grant support

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center