Send to

Choose Destination
See comment in PubMed Commons below
Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6801-4. doi: 10.1109/IEMBS.2011.6091677.

Wide-field fluorescent microscopy on a cell-phone.

Author information

  • 1Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA.


We demonstrate wide-field fluorescent imaging on a cell-phone, using compact and cost-effective optical components that are mechanically attached to the existing camera unit of the cell-phone. Battery powered light-emitting diodes (LEDs) are used to side-pump the sample of interest using butt-coupling. The pump light is guided within the sample cuvette to excite the specimen uniformly. The fluorescent emission from the sample is then imaged with an additional lens that is put in front of the existing lens of the cell-phone camera. Because the excitation occurs through guided waves that propagate perpendicular to the detection path, an inexpensive plastic color filter is sufficient to create the dark-field background needed for fluorescent imaging. The imaging performance of this light-weight platform (~28 grams) is characterized with red and green fluorescent microbeads, achieving an imaging field-of-view of ~81 mm(2) and a spatial resolution of ~10 μm, which is enhanced through digital processing of the captured cell-phone images using compressive sampling based sparse signal recovery. We demonstrate the performance of this cell-phone fluorescent microscope by imaging labeled white-blood cells separated from whole blood samples as well as water-borne pathogenic protozoan parasites such as Giardia Lamblia cysts.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Support Center