Format

Send to

Choose Destination
See comment in PubMed Commons below
Drug Metab Dispos. 2012 Apr;40(4):754-60. doi: 10.1124/dmd.111.042820. Epub 2012 Jan 17.

Altered human CYP3A4 activity caused by Antley-Bixler syndrome-related variants of NADPH-cytochrome P450 oxidoreductase measured in a robust in vitro system.

Author information

1
Department of Genetics, Faculty of Medical Sciences, Centro de Investigação em Genética Molecular Humana, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal.

Abstract

NADPH-cytochrome P450 oxidoreductase (CYPOR) variants have been described in patients with perturbed steroidogenesis and sexual differentiation, related to Antley-Bixler syndrome (ABS). It is important to determine the effect of these variants on CYP3A4, the major drug-metabolizing cytochrome P450 (P450) in humans. In this study, 12 CYPOR_ABS variants were separately coexpressed with CYP3A4 in a robust in vitro system to evaluate the effects of these variants on CYP3A4 activity in a milieu that recapitulates the stoichiometry of the mammalian systems. Full-length CYPOR variants were coexpressed with CYP3A4, resulting in relative expression levels comparable to those found in hepatic tissue. Dibenzylfluorescein (DBF), a CYP3A-specific reporter substrate (Biopharm Drug Dispos 24:375-384, 2003), was used to compare the variants and wild-type (WT) CYPOR activities with that of human liver microsomes. CYP3A4, combined with WT CYPOR, demonstrated kinetic parameters (k(cat) and K(m)) equal to those for pooled human liver microsomes. CYPOR variants Y181D, Y459H, V492E, L565P, and R616X all demonstrated maximal loss of CYP3A4 catalytic efficiency, whereas R457H and G539R retained ∼10 and 30% activities, respectively. Conversely, variants P228L, M263V, A287P, and G413S each showed WT-like capacity (k(cat)/K(m)), with the A287P variant being formerly reported to exhibit substantially lower catalytic efficiency. In addition, Q153R exhibited 60% of WT CYPOR capacity to support the DBF O-debenzylation reaction, contradicting increased catalytic efficiency (k(cat)/K(m)) relative to that for the WT, reported previously. Our data indicate the importance of use of simulated, validated in vitro systems, employing full-length proteins with appropriate stoichiometric incorporation of protein partners, when pharmacogenetic predictions are to be made for P450-mediated biotransformation.

PMID:
22252407
PMCID:
PMC3310424
DOI:
10.1124/dmd.111.042820
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center