Send to

Choose Destination
Chin J Physiol. 2012 Feb 29;55(1):8-15. doi: 10.4077/CJP.2012.AMM102.

Exercise-induced changes in redox status of elite karate athletes.

Author information

Center for Hemodialysis, Medical Center, Obrenovac, Republic of Serbia.


Regular training has been claimed to increase the activity of antioxidant enzymes and, consequently, augments the resistance to oxidative stress; however, large volumes of training performed by elite sportsmen could lead to a chronic oxidative stress state. The aim of our study was to assess the oxidative status of elite athletes at the beginning of the preparatory and the beginning of the competition training phases, so that the influence of three months of programmed physical activity on redox status could be determined. The chronic effects of exercise on the redox state of the athletes were compared to the effects of a single bout of karate training. Thirty elite karate athletes, 16-30 years old, were subjected to maximal graded exercise test to estimate their aerobic capacity; blood sampling was also performed to measure levels of superoxide anion radical (O₂⁻), hydrogen peroxide (H₂O₂), superoxide dismutase activity (SOD) and catalase activity (CAT). The only significant change after the three-month training process was found in the significantly decreased CAT activity (X ± SE: 7.95 ± 0.13 U/g Hb × 10³ in the preparatory period, 6.65 ± 0.28 U/g Hb × 10³ in the competition stage; P < 0.01). After a single karate training session, there was statistically significant decrease of O₂⁻(X ± SE: 32.7 ± 4.9 nmol/ml in the preparatory period, 24.5 ± 2.5 nmol/ml in the competition stage; P < 0.05) and increase of H₂O₂(X ± SE: 11.8 ± 1.0 nmol/ml in the preparatory period, 14.2 ± 0.9 nmol/ml in the competition stage; P < 0.01), as well as significant CAT increase (X ± SE: 6.6 ± 0.6 U/g Hb × 10³ in the preparatory period, 8.5 ± 0.5 U/g Hb × 10³ in the competition stage; P < 0.05). Although the three-month training process induced, at the first sight, negative changes in the redox state, expressed through the decrease in CAT activity, adequate response of the antioxidant system of our athletes to acute exercise was preserved.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Airiti Press
Loading ...
Support Center