Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(1):e29559. doi: 10.1371/journal.pone.0029559. Epub 2012 Jan 5.

Human PAPS synthase isoforms are dynamically regulated enzymes with access to nucleus and cytoplasm.

Author information

  • 1Department of Molecular Biology II, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.


In higher eukaryotes, PAPS synthases are the only enzymes producing the essential sulphate-donor 3'-phospho-adenosine-5'-phosphosulphate (PAPS). Recently, PAPS synthases have been associated with several genetic diseases and retroviral infection. To improve our understanding of their pathobiological functions, we analysed the intracellular localisation of the two human PAPS synthases, PAPSS1 and PAPSS2. For both enzymes, we observed pronounced heterogeneity in their subcellular localisation. PAPSS1 was predominantly nuclear, whereas PAPSS2 localised mainly within the cytoplasm. Treatment with the nuclear export inhibitor leptomycin B had little effect on their localisation. However, a mutagenesis screen revealed an Arg-Arg motif at the kinase interface exhibiting export activity. Notably, both isoforms contain a conserved N-terminal basic Lys-Lys-Xaa-Lys motif indispensable for their nuclear localisation. This nuclear localisation signal was more efficient in PAPSS1 than in PAPSS2. The activities of the identified localisation signals were confirmed by microinjection studies. Collectively, we describe unusual localisation signals of both PAPS synthase isoforms, mobile enzymes capable of executing their function in the cytoplasm as well as in the nucleus.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center