Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2012 Mar 9;287(11):8163-73. doi: 10.1074/jbc.M111.316059. Epub 2012 Jan 12.

Functional identification of triterpene methyltransferases from Botryococcus braunii race B.

Author information

Plant Biology Program, University of Kentucky, Lexington, Kentucky 40546-0312, USA.


Botryococcus braunii race B is a colony-forming, green algae that accumulates triterpene oils in excess of 30% of its dry weight. The composition of the triterpene oils is dominated by dimethylated to tetramethylated forms of botryococcene and squalene. Although unusual mechanisms for the biosynthesis of botryococcene and squalene were recently described, the enzyme(s) responsible for decorating these triterpene scaffolds with methyl substituents were unknown. A transcriptome of B. braunii was screened computationally assuming that the triterpene methyltransferases (TMTs) might resemble the S-adenosyl methionine-dependent enzymes described for methylating the side chain of sterols. Six sterol methyltransferase-like genes were isolated and functionally characterized. Three of these genes when co-expressed in yeast with complementary squalene synthase or botryococcene synthase expression cassettes resulted in the accumulation of mono- and dimethylated forms of both triterpene scaffolds. Surprisingly, TMT-1 and TMT-2 exhibited preference for squalene as the methyl acceptor substrate, whereas TMT-3 showed a striking preference for botryococcene as its methyl acceptor substrate. These in vivo preferences were confirmed with in vitro assays utilizing microsomal preparations from yeast overexpressing the respective genes, which encode for membrane-associated enzymes. Structural examination of the in vivo yeast generated mono- and dimethylated products by NMR identified terminal carbons, C-3 and C-22/C-20, as the atomic acceptor sites for the methyl additions to squalene and botryococcene, respectively. These sites are identical to those previously reported for the triterpenes extracted from the algae. The availability of closely related triterpene methyltransferases exhibiting distinct substrate selectivity and successive catalytic activities provides important tools for investigating the molecular mechanisms responsible for the specificities exhibited by these unique enzymes.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center