Format

Send to

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 2012 Apr;112(7):1114-21. doi: 10.1152/japplphysiol.01391.2011. Epub 2012 Jan 12.

Erythropoietin administration acutely stimulates resting energy expenditure in healthy young men.

Author information

1
Department of Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark. britt.christensen@ki.au.dk

Abstract

Treatment with recombinant human erythropoietin (rHuEpo) improves insulin sensitivity in patients with end-stage renal disease, and animal studies indicate that Epo increases fat oxidation. However, the metabolic effects of rHuEpo have never been experimentally studied in healthy humans. The aim was to investigate the effects of an acute rHuEpo bolus on substrate metabolism and insulin sensitivity in healthy young men. Ten healthy young men were studied in a single-blinded, randomized crossover design with a 2-wk washout period receiving 400 IU/kg rHuEpo or placebo. Substrate metabolism was evaluated by indirect calorimetry and tracer infusions, and insulin sensitivity by a hyperinsulinemic euglycemic clamp; and PCR and Western blotting measured protein expression and content, respectively. Resting energy expenditure (REE) increased significantly after rHuEpo [basal: 1,863.3 ± 67.2 (kcal/day) (placebo) vs. 2,041.6 ± 81.2 (rHuEpo), P < 0.001; clamp: 1,903.9 ± 68.3 (placebo) vs. 2,015.7 ± 114.4 (rHuEpo), P = 0.03], but the increase could not be explained by changes in mRNA levels of uncoupling protein 2 or 3. Fat oxidation in the basal state tended to be higher after rHuEpo but could not be explained by changes in mRNA levels of CPT1 and PPARα or AMPK and ACC protein phosphorylation. Insulin-stimulated glucose disposal, glucose metabolism, and whole body and forearm protein metabolism did not change significantly in response to rHuEpo. In conclusion, a single injection of rHuEpo acutely increases REE in healthy human subjects. This calorigenic effect is not accompanied by distinct alterations in the pattern of substrate metabolism or insulin sensitivity.

PMID:
22241056
DOI:
10.1152/japplphysiol.01391.2011
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center