Send to

Choose Destination
Mol Ther. 2012 Mar;20(3):652-60. doi: 10.1038/mt.2011.286. Epub 2012 Jan 10.

Long-term persistence of CD4(+) but rapid disappearance of CD8(+) T cells expressing an MHC class I-restricted TCR of nanomolar affinity.

Author information

Department of Pathology, Committee on Immunology, The University of Chicago, Chicago, Illinois 60637-5420, USA.


Most T cells have T cell receptors (TCR) of micromolar affinity for peptide-major histocompatibility complex (MHC) ligands, but genetic engineering can generate TCRs of nanomolar affinity. The affinity of the TCR used, m33, for its cognate non-self peptide-MHC-I complex (SIYRYYGL-K(b)) is 1,000-fold higher than of the wild-type TCR 2C. The affinity of m33 for the self-peptide dEV-8 on K(b) is only twofold higher. Mouse CD8(+) T cells transduced with an m33-encoding retrovirus showed binding of SIY-K(b) and potent function in vitro, but in vivo these T cells disappeared within hours after transfer into syngeneic hosts without causing graft-versus-host disease (GVHD). Accordingly, in cases where such CD8-dependent self-reactivity might occur in human adoptive T cell therapies, our results show that a peripheral T-cell deletion mechanism could operate to avoid reactions with the host. In contrast to CD8(+) T cells, we show that CD4(+) T cells expressing m33 survived for months in vivo. Furthermore, the m33-transduced CD4(+) T cells were able to mediate antigen-specific rejection of 6-day-old tumors. Together, we show that CD8(+) T cell expressing a MHC class I-restricted high-affinity TCR were rapidly deleted whereas CD4(+) T cells expressing the same TCR survived and provided function while being directed against a class I-restricted antigen.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center