Format

Send to

Choose Destination
Cell Microbiol. 2012 May;14(5):669-81. doi: 10.1111/j.1462-5822.2012.01749.x. Epub 2012 Feb 15.

A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses.

Author information

1
Centro de Biotecnología y Genómica de Plantas (CBGP). Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria., Parque Científico y Tecnológico de la UPM. Campus de Montegancedo. 28223 Pozuelo de Alarcón, Madrid, Spain.

Abstract

The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center