Send to

Choose Destination
Zygote. 2013 May;21(2):115-24. doi: 10.1017/S0967199411000712. Epub 2012 Jan 10.

Characterization of oocyte-expressed GDF9 gene in buffalo and mapping of its TSS and putative regulatory elements.

Author information

Animal Genomics Laboratory, National Dairy Research Institute, Karnal, India.


In spite of emerging evidence about the vital role of GDF9 in determination of oocyte competence, there is insufficient information about its regulation of oocyte-specific expression, particularly in livestock animals. Because of the distinct prominence of buffalo as a dairy animal, the present study was undertaken to isolate and characterize GDF9 cDNA using orthologous primers based on the bovine GDF9 sequence. GDF9 transcripts were found to be expressed in oocytes irrespective of their follicular origin, and shared a single transcription start site (TSS) at -57 base pairs (bp) upstream of ATG. Assignment of the TSS is consistent with the presence of a TATA element at -23 of the TSS mapped in this study. Localization of a buffalo-specific minimal promoter within 320 bp upstream of ATG was consolidated by identification of an E-box element at -113bp. Presence of putative transcription factor binding sites and other cis regulatory elements were analyzed at ~5 kb upstream of TSS. Various germ cell-specific cis-acting regulatory elements (BNCF, BRNF, NR2F, SORY, Foxh1, OCT1, LHXF etc.) have been identified in the 5' flanking region of the buffalo GDF9 gene, including NOBOX DNA binding elements and consensuses E-boxes (CANNTG). Presence of two conserved E-boxes found on buffalo sequence at -520 and -718 positions deserves attention in view of its sequence deviation from other species. Two NOBOX binding elements (NBE) were detected at the -3471 and -203 positions. The fall of the NBE within the putative minimal promoter territory of buffalo GDF9 and its unique non-core binding sequence could have a possible role in the control of the core promoter activity.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Cambridge University Press
Loading ...
Support Center