Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2012 Feb 24;287(9):6518-29. doi: 10.1074/jbc.M111.273698. Epub 2012 Jan 6.

Formation of new high density glycogen-microtubule structures is induced by cardiac steroids.

Author information

Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.


Cardiac steroids (CS), an important class of naturally occurring compounds, are synthesized in plants and animals. The only established receptor for CS is the ubiquitous Na(+),K(+)-ATPase, a major plasma membrane transporter. The binding of CS to Na(+),K(+)-ATPase causes the inhibition of Na(+) and K(+) transport and elicits cell-specific activation of several intracellular signaling mechanisms. It is well documented that the interaction of CS with Na(+),K(+)-ATPase is responsible for numerous changes in basic cellular physiological properties, such as electrical plasma membrane potential, cell volume, intracellular [Ca(2+)] and pH, endocytosed membrane traffic, and the transport of other solutes. In the present study we show that CS induces the formation of dark structures adjacent to the nucleus in human NT2 and ACHN cells. These structures, which are not surrounded by membranes, are clusters of glycogen and a distorted microtubule network. Formation of these clusters results from a relocation of glycogen and microtubules in the cells, two processes that are independent of one another. The molecular mechanisms underlying the formation of the clusters are mediated by the Na(+),K(+)-ATPase, ERK1/2 signaling pathway, and an additional unknown factor. Similar glycogen clusters are induced by hypoxia, suggesting that the CS-induced structural change, described in this study, may be part of a new type of cellular stress response.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center