Format

Send to

Choose Destination
Bioorg Med Chem. 2012 Feb 1;20(3):1303-9. doi: 10.1016/j.bmc.2011.12.026. Epub 2011 Dec 27.

Synthesis, anticancer activity and pharmacokinetic analysis of 1-[(substituted 2-alkoxyquinoxalin-3-yl)aminocarbonyl]-4-(hetero)arylpiperazine derivatives.

Author information

1
Rexahn Pharmaceuticals, Inc., Rockville, MD 20850, USA. leeyb@rexahn.com

Abstract

Based on the anticancer activity of novel quinoxalinyl-piperazine compounds, 1-[(5 or 6-substituted alkoxyquinoxalinyl)aminocarbonyl]-4-(hetero)arylpiperazine derivatives published in Bioorg. Med. Chem.2010, 18, 7966, we further explored the synthesis of 7 or 8-substituted quinoxalinyl piperazine derivatives. From in vitro studies of the newly synthesized compounds using human cancer cell lines, we identified some of the 8-substituted compounds, for example 6p, 6q and 6r, which inhibited the proliferation of various human cancer cells at nanomolar concentrations. Compound 6r, in particular, showed the lowest IC(50) values, ranging from 6.1 to 17nM, in inhibition of the growth of cancer cells, which is better than compound 6k (compound 25 in the reference cited above). In order to select and develop a leading compound among the quinoxaline compounds with substitutions on positions 5, 6, 7 or 8, the compounds comparable to compound 6k in in vitro cancer cell growth inhibition were chosen and their pharmacokinetic properties were evaluated in rats. In these studies, compound 6k showed the highest oral bioavailability of 83.4%, and compounds 6j and 6q followed, with 77.8% and 57.6%, respectively. From the results of in vitro growth inhibitory activities and the pharmacokinetic study, compound 6k is suggested for further development as an orally deliverable anticancer drug.

PMID:
22226981
DOI:
10.1016/j.bmc.2011.12.026
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center