Send to

Choose Destination
Neurochem Int. 2012 Feb;60(3):310-7. doi: 10.1016/j.neuint.2011.12.015. Epub 2011 Dec 30.

CDP-choline treatment induces brain plasticity markers expression in experimental animal stroke.

Author information

Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neurosciences Area of IdiPAZ, Health Research Institute, Autónoma University of Madrid, Madrid, Spain.


We investigated the effect of CDP-choline on brain plasticity markers expression in the acute phase of cerebral infarct in an experimental animal model. Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (pMCAO) and treated or not with CDP-choline (500 mg/kg) daily for 14 days starting 30 min after pMCAO. Functional status was evaluated with Roger's test; lesion volume with magnetic resonance imaging (MRI) and hematoxylin and eosin staining (H&E); cell death with TUNEL; cellular proliferation with BrdU immunohistochemistry; vascular endothelial growth factor (VEGF), synaptophysin, glial fibrillary acidic protein (GFAP) and low-density lipoprotein receptor-related protein (LRP) by immunofluorescence and Western-blot techniques. CDP-choline significantly improved functional recovery and decreased lesion volume on MRI, TUNEL-positive cell number and LRP levels at 14 days. In addition, CDP-choline significantly increased BrdU, VEGF and synaptophysin values and decreased GFAP levels in the peri-infarct zone compared with the infarct group. In conclusion, our data indicate that CDP-choline improved functional recovery after permanent middle cerebral artery occlusion in association with reductions in lesion volume, cell death and LRP expression. In fact, CDP-choline increased cell proliferation, vasculogenesis and synaptophysin levels and reduced GFAP levels in the peri-infarct area of the ischemic stroke.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center