Send to

Choose Destination
Cell Calcium. 2012 Feb;51(2):186-93. doi: 10.1016/j.ceca.2011.12.012. Epub 2012 Jan 4.

Translocation of calcium-permeable TRPV2 channel to the podosome: Its role in the regulation of podosome assembly.

Author information

Department of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.


The present study was conducted to investigate localization and function of TRPV2 channel in a mouse macrophage cell line, TtT/M87. We infected an adenovirus vector encoding TRPV2 tagged with c-Myc in the extracellular domain. Immunoreactivity of c-Myc epitope exposed to the cell surface formed a ring structure, which was colocalized with markers of the podosome, namely β-integrin, paxillin and Pyk2. The ring structure was also observed in TRPV2-GFP-expressing cells using total internal reflection fluorescent microscopy. Addition of formyl-Met-Leu-Phe (fMLP) increased the number of podosome and increased the intensity of the TRPV2 signal associated with the podosome. Measurement of subplasmalenmal free calcium concentration ([Ca(2+)](pm)) revealed that [Ca(2+)](pm) was elevated around the podosome. fMLP further increased [Ca(2+)](pm) in this region, which was abolished by a TRPV2 inhibitor ruthenium red. Phosphorylated Pyk2 was detected in fMLP-treated cells, and knockdown of TRPV2 reduced the expression of phospho-Pyk2. Introduction of dominant-negative Pyk2 or knockdown of TRPV2 increased the number of podosome. Conversely, elevation of [Ca(2+)](pm) by the addition of ionomycin reduced the number of podosome. These results indicate that TRPV2 is localized abundantly in the podosome and increases [Ca(2+)](pm) by the podosome. The elevation of [Ca(2+)](pm) is critical to regulate assembly of the podosome.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center