Format

Send to

Choose Destination
Breast Cancer Res. 2012 Jan 7;14(1):R8.

Hyperinsulinemia enhances c-Myc-mediated mammary tumor development and advances metastatic progression to the lung in a mouse model of type 2 diabetes.

Author information

1
Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.

Abstract

INTRODUCTION:

Hyperinsulinemia, which is common in early type 2 diabetes (T2D) as a result of the chronically insulin-resistant state, has now been identified as a specific factor which can worsen breast cancer prognosis. In breast cancer, a high rate of mortality persists due to the emergence of pulmonary metastases.

METHODS:

Using a hyperinsulinemic mouse model (MKR+/+) and the metastatic, c-Myc-transformed mammary carcinoma cell line Mvt1, we investigated how high systemic insulin levels would affect the progression of orthotopically inoculated primary mammary tumors to lung metastases.

RESULTS:

We found that orthotopically injected Mvt1 cells gave rise to larger mammary tumors and to a significantly higher mean number of pulmonary macrometastases in hyperinsulinemic mice over a period of six weeks (hyperinsulinemic, 19.4 ± 2.7 vs. control, 4.0 ± 1.3). When Mvt1-mediated mammary tumors were allowed to develop and metastasize for approximately two weeks and were then surgically removed, hyperinsulinemic mice demonstrated a significantly higher number of lung metastases after a four-week period (hyperinsulinemic, 25.1 ± 4.6 vs. control, 7.4 ± 0.42). Similarly, when Mvt1 cells were injected intravenously, hyperinsulinemic mice demonstrated a significantly higher metastatic burden in the lung than controls after a three-week period (hyperinsulinemic, 6.0 ± 1.63 vs. control, 1.5 ± 0.68). Analysis of Mvt1 cells both in vitro and in vivo revealed a significant up-regulation of the transcription factor c-Myc under hyperinsulinemic conditions, suggesting that hyperinsulinemia may promote c-Myc signaling in breast cancer. Furthermore, insulin-lowering therapy using the beta-adrenergic receptor agonist CL-316243 reduced metastatic burden in hyperinsulinemic mice to control levels.

CONCLUSIONS:

Hyperinsulinemia in a mouse model promotes breast cancer metastasis to the lung. Therapies to reduce insulin levels in hyperinsulinemic patients suffering from breast cancer could lessen the likelihood of metastatic progression.

PMID:
22226054
PMCID:
PMC3496123
DOI:
10.1186/bcr3089
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center