Send to

Choose Destination
Annu Rev Biophys. 2012;41:103-33. doi: 10.1146/annurev-biophys-050511-102222. Epub 2012 Jan 6.

Allostery and the Monod-Wyman-Changeux model after 50 years.

Author information

Coll├Ęge de France & Institut Pasteur, URA CNRS 2182, Paris Cedex 15 75724, France.


The Monod-Wyman-Changeux (MWC) model was conceived in 1965 to account for the signal transduction and cooperative properties of bacterial regulatory enzymes and hemoglobin. It was soon extended to pharmacological receptors for neurotransmitters and other macromolecular entities involved in intracellular and intercellular communications. Five decades later, the two main hypotheses of the model are reexamined on the basis of a variety of regulatory proteins with known X-ray structures: (a) Regulatory proteins possess an oligomeric structure with symmetry properties, and (b) the allosteric interactions between topographically distinct sites are mediated by a conformational transition established between a few preestablished states with conservation of symmetry and ligand-directed conformational selection. Several well-documented examples are adequately represented by the MWC model, yet a few possible exceptions are noted. New questions are raised concerning the dynamics of the allosteric transitions and more complex supramolecular ensembles.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center