Format

Send to

Choose Destination
Annu Rev Plant Biol. 2012;63:153-82. doi: 10.1146/annurev-arplant-042811-105532. Epub 2012 Jan 3.

Plant nitrogen assimilation and use efficiency.

Author information

1
State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China. ghxu@njau.edu.cn

Abstract

Crop productivity relies heavily on nitrogen (N) fertilization. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment; therefore, increasing plant N use efficiency (NUE) is essential for the development of sustainable agriculture. Plant NUE is inherently complex, as each step-including N uptake, translocation, assimilation, and remobilization-is governed by multiple interacting genetic and environmental factors. The limiting factors in plant metabolism for maximizing NUE are different at high and low N supplies, indicating great potential for improving the NUE of current cultivars, which were bred in well-fertilized soil. Decreasing environmental losses and increasing the productivity of crop-acquired N requires the coordination of carbohydrate and N metabolism to give high yields. Increasing both the grain and N harvest index to drive N acquisition and utilization are important approaches for breeding future high-NUE cultivars.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center