The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more

Antioxid Redox Signal. 2012 May 15;16(10):1109-18. doi: 10.1089/ars.2011.4475. Epub 2012 Feb 15.

Abstract

Significance: The oxidative process of disulfide-bond formation is essential for the folding of most secretory and membrane proteins in the endoplasmic reticulum (ER). It is driven by electron relay pathways that transfer two electrons derived from the fusion of two adjacent cysteinyl side chains onto various types of chemical oxidants. The conserved, ER-resident endoplasmic oxidoreductin 1 (Ero1) sulfhydryl oxidases that reduce molecular oxygen to generate an active-site disulfide represent one of these pathways. In mammals, two family members exist, Ero1α and Ero1β.

Recent advances: The two mammalian Ero1 enzymes differ in transcriptional and post-translational regulation, tissue distribution, and catalytic turnover. A specific protein-protein interaction between either isoform and protein disulfide isomerase (PDI) facilitates the propagation of disulfides from Ero1 via PDI to nascent polypeptides, and inbuilt oxidative shutdown mechanisms in Ero1α and Ero1β prevent excessive oxidation of PDI.

Critical issues: Besides disulfide-bond generation, Ero1α also regulates calcium release from the ER and the secretion of disulfide-linked oligomers through its reversible association with the chaperone ERp44. This review explores the functional repertoire and possible redundancy of mammalian Ero1 enzymes.

Future directions: Systematic analyses of different knockout mouse models will be the most promising strategy to shed new light on unique and tissue-specific roles of Ero1α and Ero1β. Moreover, in-depth characterization of the known physical interactions of Ero1 with peroxidases and PDI family members will help broaden our functional and mechanistic understanding of Ero1 enzymes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Apoptosis
  • Disulfides / metabolism*
  • Endoplasmic Reticulum / metabolism*
  • Endoplasmic Reticulum Stress
  • Humans
  • Membrane Proteins / metabolism
  • Molecular Sequence Data
  • Oxidoreductases / chemistry
  • Oxidoreductases / genetics
  • Oxidoreductases / metabolism*
  • Protein Folding
  • Sequence Alignment
  • Yeasts / metabolism

Substances

  • Disulfides
  • Membrane Proteins
  • Oxidoreductases
  • sulfhydryl oxidase