Send to

Choose Destination
Inorg Chem. 2012 Feb 6;51(3):1796-804. doi: 10.1021/ic202092u. Epub 2011 Dec 29.

Cytotoxicity and hydrolysis of trans-Ti(IV) complexes of salen ligands: structure-activity relationship studies.

Author information

Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.


Eleven bis(dimethylphenolato) Ti(IV) complexes of salen ligands with different steric and electronic properties due to different aromatic substituents at the ortho and para positions are reported, and their cytotoxicity toward HT-29 and OVCAR-1 cells and its dependence on hydrolytic behavior are discussed. Eight complexes of this series were analyzed by X-ray crystallography, confirming the trans geometry of the labile ligands with otherwise relatively similar coordination features to those of cis-salan analogues. Relatively high and similar hydrolytic stability is observed for all complexes, with t(1/2) values for labile ligand hydrolysis of 2-11 h in 10% D(2)O solutions. In contrast, varying cytotoxicities were achieved, identifying selected members as the first trans-Ti(IV) complexes reported as anticancer agents. Steric bulk all around the complex diminished the activity, where a complex with no aromatic substitutions is especially active and complexes substituted particularly at the ortho positions are mostly inactive, including ortho-halogenated and ortho-tert-butylated, with one exception of the ortho-methoxylated complex demonstrating appreciable activity. In contrast, para-halogenation provided the complexes of highest cytotoxic activity in this series (IC(50) as low as 1.0 ± 0.3 μM), with activity exceeding that of cisplatin by up to 15-fold. Reaction of a representative complex with ortho-catechol yielded a "cis"-Ti(IV) complex following rearrangement of the salen ligand on the metal center, with highly similar coordination features and geometry to those of the catecholato salan analogues, suggesting that the complexes operate by similar mechanisms and rearrangement of the salen ligand may occur upon introduction of a suitable chelating target. In additional cytotoxicity measurements, a salen complex was preincubated in the biological medium for varying periods prior to cell addition, revealing that marked cytotoxicity of the salen complex is retained for longer preincubation periods relative to known Ti(IV) complexes, suggesting that the hydrolysis products may also induce cytotoxic effects, thus reducing stability concerns.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center