Format

Send to

Choose Destination
Eur J Nucl Med Mol Imaging. 2012 Mar;39(3):512-20. doi: 10.1007/s00259-011-2008-5. Epub 2012 Jan 5.

Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin's lymphoma using 89Zr-ibritumomab tiuxetan and PET.

Author information

1
Department of Nuclear Medicine and PET Research, VU University Medical Center, Amsterdam, The Netherlands. snf.rizvi@vumc.nl

Abstract

PURPOSE:

Positron emission tomography (PET) with (89)Zr-ibritumomab tiuxetan can be used to monitor biodistribution of (90)Y-ibritumomab tiuxetan as shown in mice. The aim of this study was to assess biodistribution and radiation dosimetry of (90)Y-ibritumomab tiuxetan in humans on the basis of (89)Zr-ibritumomab tiuxetan imaging, to evaluate whether co-injection of a therapeutic amount of (90)Y-ibritumomab tiuxetan influences biodistribution of (89)Zr-ibritumomab tiuxetan and whether pre-therapy scout scans with (89)Zr-ibritumomab tiuxetan can be used to predict biodistribution of (90)Y-ibritumomab tiuxetan and the dose-limiting organ during therapy.

METHODS:

Seven patients with relapsed B-cell non-Hodgkin's lymphoma scheduled for autologous stem cell transplantation underwent PET scans at 1, 72 and 144 h after injection of ~70 MBq (89)Zr-ibritumomab tiuxetan and again 2 weeks later after co-injection of 15 MBq/kg or 30 MBq/kg (90)Y-ibritumomab tiuxetan. Volumes of interest were drawn over liver, kidneys, lungs, spleen and tumours. Ibritumomab tiuxetan organ absorbed doses were calculated using OLINDA. Red marrow dosimetry was based on blood samples. Absorbed doses to tumours were calculated using exponential fits to the measured data.

RESULTS:

The highest (90)Y absorbed dose was observed in liver (3.2 ± 1.8 mGy/MBq) and spleen (2.9 ± 0.7 mGy/MBq) followed by kidneys and lungs. The red marrow dose was 0.52 ± 0.04 mGy/MBq, and the effective dose was 0.87 ± 0.14 mSv/MBq. Tumour absorbed doses ranged from 8.6 to 28.6 mGy/MBq. Correlation between predicted pre-therapy and therapy organ absorbed doses as based on (89)Zr-ibritumomab tiuxetan images was high (Pearson correlation coefficient r = 0.97). No significant difference between pre-therapy and therapy tumour absorbed doses was found, but correlation was lower (r = 0.75).

CONCLUSION:

Biodistribution of (89)Zr-ibritumomab tiuxetan is not influenced by simultaneous therapy with (90)Y-ibritumomab tiuxetan, and (89)Zr-ibritumomab tiuxetan scout scans can thus be used to predict biodistribution and dose-limiting organ during therapy. Absorbed doses to spleen were lower than those previously estimated using (111)In-ibritumomab tiuxetan. The dose-limiting organ in patients undergoing stem cell transplantation is the liver.

PMID:
22218876
PMCID:
PMC3276758
DOI:
10.1007/s00259-011-2008-5
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center