Send to

Choose Destination
Mol Reprod Dev. 2012 Mar;79(3):218-28. doi: 10.1002/mrd.22015. Epub 2011 Dec 29.

Characterization of the ICSI-mediated gene transfer method in the production of transgenic pigs.

Author information

Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Tama, Kawasaki, Kanagawa, Japan.


Understanding the behavior of transgenes introduced into oocytes or embryos is essential for evaluating the methodologies for transgenic animal production. We investigated the expression pattern of a transgene transferred to porcine eggs by intracytoplasmic sperm injection-mediated gene transfer (ICSI-MGT) or pronuclear microinjection (PN injection). The introduction of the EGFP gene by ICSI-MGT yielded significantly more embryos with non-mosaic transgene expression (P < 0.01). In the ICSI-MGT group, 61.5% (24/39) of the embryos were EGFP-positive in all their component blastomeres at the morula stage, while fewer than 10% of such embryos were EGFP-positive in the PN-injection group. Using three types of transgenes, ranging from 3.0 to 7.5 kb in size, we confirmed that approximately one in four fetuses obtained by ICSI-MGT was transgenic, suggesting that ICSI-MGT is a practical method for transgenic pig production. Southern blot analysis of 12 transgenic fetuses produced by ICSI-MGT revealed that the number of integrated transgene copies varied from 1 to 300, with no correlation between transgene size and the number of integrated copies. Fluorescence in situ hybridization analysis revealed that the transgenes were randomly integrated into a single site on the host chromosomes. Together, these data indicate that multiple-copy, single-site integration of a transgene is the primary outcome of ICSI-MGT in the pig and that ICSI-MGT is less likely than PN injection to cause transgene integration in a mosaic manner.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center